Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
ASAIO J ; 67(10): 1087-1096, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1443140

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged into a worldwide pandemic of epic proportion. Beyond pulmonary involvement in coronavirus disease 2019 (COVID-19), a significant subset of patients experiences acute kidney injury. Patients who die from severe disease most notably show diffuse acute tubular injury on postmortem examination with a possible contribution of focal macro- and microvascular thrombi. Renal biopsies in patients with proteinuria and hematuria have demonstrated a glomerular dominant pattern of injury, most notably a collapsing glomerulopathy reminiscent of findings seen in human immunodeficiency virus (HIV) in individuals with apolipoprotein L-1 (APOL1) risk allele variants. Although various mechanisms have been proposed for the pathogenesis of acute kidney injury in SARS-CoV-2 infection, direct renal cell infection has not been definitively demonstrated and our understanding of the spectrum of renal involvement remains incomplete. Herein we discuss the biology, pathology, and pathogenesis of SARS-CoV-2 infection and associated renal involvement. We discuss the molecular biology, risk factors, and pathophysiology of renal injury associated with SARS-CoV-2 infection. We highlight the characteristics of specific renal pathologies based on native kidney biopsy and autopsy. Additionally, a brief discussion on ancillary studies and challenges in the diagnosis of SARS-CoV-2 is presented.


Subject(s)
Acute Kidney Injury , COVID-19/complications , Kidney/pathology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , COVID-19/pathology , Humans , Kidney Tubular Necrosis, Acute/pathology , SARS-CoV-2
2.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1310646

ABSTRACT

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetes Mellitus/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , COVID-19/genetics , Cells, Cultured , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Gene Expression , Humans , Insulin-Secreting Cells/metabolism , Mice , Microvessels/metabolism , Pancreas/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Serine Endopeptidases/analysis , Serine Endopeptidases/genetics
3.
Mod Pathol ; 34(9): 1614-1633, 2021 09.
Article in English | MEDLINE | ID: covidwho-1241797

ABSTRACT

The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) pandemic has had devastating effects on global health and worldwide economy. Despite an initial reluctance to perform autopsies due to concerns for aerosolization of viral particles, a large number of autopsy studies published since May 2020 have shed light on the pathophysiology of Coronavirus disease 2019 (COVID-19). This review summarizes the histopathologic findings and clinicopathologic correlations from autopsies and biopsies performed in patients with COVID-19. PubMed and Medline (EBSCO and Ovid) were queried from June 4, 2020 to September 30, 2020 and histopathologic data from autopsy and biopsy studies were collected based on 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 58 studies reporting 662 patients were included. Demographic data, comorbidities at presentation, histopathologic findings, and virus detection strategies by organ system were collected. Diffuse alveolar damage, thromboembolism, and nonspecific shock injury in multiple organs were the main findings in this review. The pathologic findings emerging from autopsy and biopsy studies reviewed herein suggest that in addition to a direct viral effect in some organs, a unifying pathogenic mechanism for COVID-19 is ARDS with its known and characteristic inflammatory response, cytokine release, fever, inflammation, and generalized endothelial disturbance. This study supports the notion that autopsy studies are of utmost importance to our understanding of disease features and treatment effect to increase our knowledge of COVID-19 pathophysiology and contribute to more effective treatment strategies.


Subject(s)
COVID-19/pathology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Humans , SARS-CoV-2
4.
Arch Pathol Lab Med ; 145(5): 529-535, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1207909

ABSTRACT

CONTEXT.­: This study represents the largest compilation to date of clinical and postmortem data from decedents with coronavirus disease 2019 (COVID-19). It will augment previously published small series of autopsy case reports, refine clinicopathologic considerations, and improve the accuracy of future vital statistical reporting. OBJECTIVE.­: To accurately reflect the preexisting diseases and pathologic conditions of decedents with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection through autopsy. DESIGN.­: Comprehensive data from 135 autopsy evaluations of COVID-19-positive decedents is presented, including histologic assessment. Postmortem examinations were performed by 36 pathologists at 19 medical centers or forensic institutions in the United States and Brazil. Data from each autopsy were collected through the online submission of multiple-choice and open-ended survey responses. RESULTS.­: Patients dying of or with COVID-19 had an average of 8.89 pathologic conditions documented at autopsy, spanning a combination of prior chronic disease and acute conditions acquired during hospitalization. Virtually all decedents were cited as having more than 1 preexisting condition, encompassing an average of 2.88 such diseases each. Clinical conditions during terminal hospitalization were cited 395 times for the 135 autopsied decedents and predominantly encompassed acute failure of multiple organ systems and/or impaired coagulation. Myocarditis was rarely cited. CONCLUSIONS.­: Cause-of-death statements in both autopsy reports and death certificates may not encompass the severity or spectrum of comorbid conditions in those dying of or with COVID-19. If supported by additional research, this finding may have implications for public health decisions and reporting moving forward through the pandemic.


Subject(s)
COVID-19/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cause of Death , Chronic Disease , Comorbidity , Female , Humans , Male , Middle Aged , Pandemics , Surveys and Questionnaires , United States/epidemiology
5.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: covidwho-1011053

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) novel coronavirus 2019 (COVID-19) global pandemic has led to millions of cases and hundreds of thousands of deaths. While older adults appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of developing mouse lung with temporally resolved immunofluorescence in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases detected SARS-CoV-2 RNA most frequently in ciliated and secretory cells in airway epithelium and AT1 cells in peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in lung epithelium and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.


Subject(s)
Alveolar Epithelial Cells/enzymology , COVID-19/enzymology , COVID-19/metabolism , Gene Expression Regulation, Enzymologic , SARS-CoV-2/metabolism , Serine Endopeptidases/biosynthesis , Adult , Aging , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/pathology , Child, Preschool , Disease Models, Animal , Female , Humans , Infant , Male , Mice
6.
bioRxiv ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-955725

ABSTRACT

Reports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into host ß cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or ß cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet ß cells through these cell entry proteins.

SELECTION OF CITATIONS
SEARCH DETAIL